
MATHEMATICS OF COMPUTATION 
Volume 71, Number 240, Pages 1759-1780 
S 0025-5718(01)01390-4 
Article electronically published on December 4, 2001 

SYMBOLIC HAMBURGER-NOETHER EXPRESSIONS 
OF PLANE CURVES AND APPLICATIONS TO AG CODES 

A. CAMPILLO AND J. I. FARRAN 

ABSTRACT. In this paper, we consider some practical applications of the sym- 
bolic Hamburger-Noether expressions for plane curves, which are introduced 
as a symbolic version of the so-called Hamburger-Noether expansions. More 
precisely, we give and develop in symbolic terms algorithms to compute the 
resolution tree of a plane curve (and the adjunction divisor, in particular), 
rational parametrizations for the branches of such a curve, special adjoints 
with assigned conditions (connected with different problems, like the so-called 
Brill-Noether algorithm), and the Weierstrass semigroup at P together with 
functions for each value in this semigroup, provided P is a rational branch 
of a singular plane model for the curve. Some other computational problems 
related to algebraic curves over perfect fields can be treated symbolically by 
means of such expressions, but we deal just with those connected with the 
effective construction and decoding of algebraic geometry codes. 

1. INTRODUCTION 

There are several classical problems in the theory of algebraic curves which are 
interesting from a computational point of view. This paper is basically addressed to 
solve, in a symbolic way, two of them which become fundamental in some practical 
applications, as for instance in the theory of algebraic geometry codes (AG codes 
in short). The first one is related to plane curves, and it consists of computing 
adjoints of fixed degree with extra passing conditions. The resolution of this prob- 
lem requires in particular a good description of the desingularization process of the 
plane curve X, and the computation of its adjuntion divisor A as a consequence. 
This is usually treated in the literature with the aid of blowing-ups and Puiseux 
expansions. Blowing-ups are classically used to describe the resolution of singular- 
ities, and Puiseux expansions (when available) are used in this context for finding 
local parametrizations for any branch of X, which are needed to impose local condi- 
tions on polynomials for being adjoints with base conditions. The second problem 
is the computation of the Weierstrass semigroup of a smooth curve 2 at a certain 
rational point P, together with a rational function fl E F(s) regular outside P and 
achieving a pole at P of order 1, for each 1 in this semigroup. We solve this second 
problem with the aid of the adjuntion theory for plane curves, so that we assume 
the knowledge of a singular plane birational model X for the smooth curve X. 
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The objective of this paper is to give a complete symbolic-computation treat- 
ment of these two basic problems. Our approach is based on very classical ideas. 
First, we consider Hamburger-Noether expansions from a symbolic viewpoint. More 
precisely, we introduce in Section 2 the so-called symbolic Hamburger-Noether ex- 
pressions, which will provide us with both all the information on the desingular- 
ization process (this is detailed in Section 3) and (symbolic) parametrizations for 
all their branches. Hamburger-Noether expansions are developed in [1] for the case 
of irreducible curve singularities over algebraically closed fields. Here we will need 
not only the symbolic version but also the case of reduced plane curve singularities 
over perfect fields in general. In this way, we avoid the use of both blowing-ups 
and Puiseux expansions, and we explain the advantages of this fact in the practical 
applications. 

In order to compute adjoints with extra passing conditions, we use in Section 4 
the ideas of the so-called principle of discharge due to Enriques in [6] (see [4] and [22] 
for a modern treatment). The problem of computing Weierstrass semigroups is ap- 
proached in Section 5 in similar terms, i.e., the adjuntion theory of plane curves can 
be applied to give an algorithm to compute this semigroups and the corresponding 
functions. In both problems, the solution becomes effective by using the symbolic 
Hamburger-Noether expressions. Thus, the algorithms that we present are derived 
from the properties of adjoint divisors and classical theories by Hamburger-Noether 
and Enriques. These algorithms have been implemented by Ch. Lossen (University 
of Kaiserslautern) and the second author (see [7]) in the computer algebra system 
SINGULAR [12], created by Greuel, Pfister and Sch6nemann. 

All the results of this paper stand for (singular) plane curves defined over a per- 
fect field F (for example, any field of characteristic zero, any field F of characteristic 
p > 0 such that {P Ix E IF} = F and, in particular, any finite field). This assump- 
tion is typical in algebraic geometry as well as in the theory of algebraic function 
fields, and it is essential in this paper since dropping this requirement would imply 
that most of the results are false, especially those related to any calculation in an 
extension of the ground field. For example, in order to compute spaces of adjoints 
with base conditions which are defined over F, one would like that there exists a 
basis consisting only of adjoints defined over F, and this is not true if F is not a 
perfect field. In the same way, Hamburger-Noether expansions are available only if 
the ground field is perfect. 

For the particular case of finite fields, our results can be applied to the theory 
of algebraic geometry codes. These codes were introduced by Goppa in [9], and 
their construction from any smooth algebraic projective curve j defined over a 
finite field F can be reduced to evaluating rational functions in vector spaces ?(G) 
at certain rational points, G being a rational divisor over F (details are given in 
Section 6). Besides, with the motivation of the codes, some effective algorithms 
related to algebraic curves have been adapted for their practical use in coding 
theory. In this way, it is Goppa himself who first proposed in [10] the use of the 
Brill-Noether algorithm to construct AG codes, i.e., to compute a vector basis ?(G). 
This algorithm computes such a basis in terms of adjoints of certain degree with 
concrete assigned conditions, which corresponds to our first basic problem. Since 
then, several other papers like [14], [15], [19] or [21] were published on the same 
subject. 

On the other hand, good codes also need to have good decoding algorithms. Since 
the beginning of the 90's several decoding methods have been developed (see [18] 
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for a survey on this matter). The most efficient one is based on the majority voting 
test of Feng and Rao (see [8]). This method requires the previous computation 
of the Weierstrass semigroup of ? at a certain rational point P, together with a 
rational function fl E F(Q) regular outside P and achieving a pole at P of order 1, 
for each 1 in this semigroup (cf. Section 6), which corresponds to our second basic 
problem. We solve this problem in Section 5 in terms of plane curves. 

2. SYMBOLIC HAMBURGER-NOETHER EXPRESSIONS 
OF PLANE CURVE SINGULARITIES 

In this section, we introduce the symbolic Hamburger-Noether expressions for 
plane curve singularities. For this, we fix in the sequel an arbitrary perfect field IF 
and an absolutely irreducible projective algebraic plane curve X defined over F. For 
a closed point P of X with local ring R = Ox,p we denote by a (rational over F) 
branch of X at P any maximal prime ideal of R, where R denotes the semilocal ring 
given by the integral closure of R in its quotient field, i.e., the semilocal ring of the 
normalization of X at the neighbourhood of P. The datum of such a maximal ideal 
is equivalent to giving a minimal prime ideal of R, the completion with respect to 
the maximal ideal of R (see [23] for the details). Rational branches can also be 
characterized in terms of parametrizations, as described below. 

Assume that we have chosen an affine chart containing the point P, and let 
A = IF[X,Y]/(f(X,Y)) be the affine ring of coordinates, f(X,Y) - 0 being the 
affine equation of the curve in this chart. Regarding P as a nonzero prime ideal of 
A, one has R = Ap, where Ap is the localized ring of A at the prime ideal P, and 
there is a natural F-algebra embedding k(P) -4+ R, k(P) being the residue field of 
P (i.e., the quotient ring of R modulo its maximal ideal). For practical reasons, 
one can actually write k(P) 2 K " IF[Z]/(Q(Z)) for an irreducible polynomial 
Q E IF[Z], i.e., we can say that K is a symbolic extension of F. Thus, by enlarging 
(if necessary) the field F by its extension K, and up to a translation in K[X, Y] , we 
can assume that P is the origin, the defining ideal of P being then (X, Y). After 
this initial enlarging, the branches that we will consider are rational over K, and K 
is again a perfect field. With this notation, one has R - K[[X,Y]]/(f(X, Y)), and 
hence there exists a natural morphism K[[X, Y]] -- R. This allows us to introduce 
the following 

Definition 2.1. In the above conditions, a parametrization of X at P related to 
the coordinates X, Y is a K-algebra morphism 

p : K[[X,Y]] -+ F[[t]] 

continuous for the (X, Y)-adic and the t-adic topologies, such that Im(p) Z F and 
p(f) = 0, where K is a symbolic extension of the base field F which is isomorphic 
to the residue field of P, F is a finite extension of K and t is an indeterminate. It is 
equivalent to giving formal series x(t), y(t) E F[[t]] with at least one nonidentically 
zero such that f(x(t), y(t)) = 0. 

One can associate to each parametrization p the rational branch given by the 
minimal prime ideal p = ker(p), where 3 : R -- F[[t]] is the natural morphism 
induced by p. Thus, we say that p is a parametrization of the rational branch given 
by p. If p E K[[X, Y]] is a generator of ker(p) (this ideal is principal, according to 
Krull's theory), then p is a factor of f seen as a power series in K[[X, Y]]. Thus, 
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one can see that rational branches correspond one-to-one to irreducible factors 
of the power series f(X, Y) in the ring K[[X, Y]], and such factors are uniquely 
determined up to a unit. The equality yp(x(t), y(t)) 0 for a factor so of f checks 
that the parametrization corresponds to the branch given by the factor p. 

We say that another parametrization a : K[[X,Y]] --* F'[[u]] is derived from 
p, and it is denoted by a >- p, if there exists a formal series t(u) E F'[[u]] with 
positive order and a K-algebra continuous morphism 0 : F[[t]] - F'[[u]] with 

3(t) - t(u), such that a /3 o p. One has that >- is a partial preorder, and we 
say that two parametrizations p and a are equivalent if a >- p and p >- a. Thus, 
a parametrization p is called primitive if it is minimal with respect to the partial 
preorder >-. Primitive parametrizations corresponding to each branch are uniquely 
determined modulo equivalence, and moreover, the field extension FIK in such 
parametrizations is also minimal (that is, p(X) and p(Y) are not both in F'[[t]] 
for some field F' with K C F' C F and F' F). One actually has that rational 
branches at P are in bijection with equivalence classes of primitive parametrizations 
at P. Thus, we can call a rational parametrization to any equivalence class of 
primitive parametrizations, and it is easy to see that such a parametrization is 
"rational" in the usual sense that it is invariant under the action of the Galois group 
of the extension K K. In particular, there always exist rational parametrizations 
associated to the rational branches (details in [1]). By choosing a parametrization 
representing each rational branch, one obtains a choice which can be called the 
standard set of rational parametrizations at P, and our next aim is the effective 
computation of such a set by means of the so-called Hamburger-Noether expansions. 

Although a general definition could be given for arbitrary singular curves, we 
are studying only the case of plane curves in order to get effective computations. 
Thus, let p : K[[X, Y]] F[[t]] be a parametrization of the plane curve X defined 
at the point P, F being a finite extension of K and so of the base field F. One can 
actually consider R (the local ring of X at P) as a subring of F[[t]], the images of X 
and Y being a minimal system of generators of the maximal ideal of R. With this 
notation we introduce the following 

Definition 2.2. The Hamburger-Noether expansion of X at P for the rational 
branch given by p is a finite sequence D of expressions in the variables 
Z_1, Z, . . . , Zr of the form 

Z-1 
= ao,1Zo + ao,2Z0 + ...- +ao,ho,-,o J Z+ hZ1, 

Zo = 
al,2Z1 

+ al,3Z3 + 
-.. 

. al,hl ZL+ Z'hZ2, 

Zr-2 = 

ar-l,2Zrl 

+ 
ar-1,3Zr-l 

+... 

+-ar--1,hr +-lZr- 

Z i Zr, 

Zr-1 =ZEar,i Zr, i>1 

where r is a nonnegative integer, aj,i E F, ak,1 = 0 if k > 0, hj are positive integers 
and moreover 

(p(Zo(Zr), Z_1(Zr)) = 0 in F[[Zr]] 

if ?o E K[[X, Y]] is a generator of the prime ideal ker (p) . 
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The existence of such expansions and the finiteness of the number of lines is 
referred to [1] and [24]. In fact such an expansion D always gives a rational 
parametrization equivalent to p if we consider X = Zo and Y = Z_1 as a function 
of the local parameter s = Z, by successive substitutions. Moreover, D depends 
only on the branch given by p and the choice of the parameters x, y in R given by 
the images of X, Y under p. Thus, for X and Y fixed the (finite) set of all the pos- 
sible nonequivalent Hamburger-Noether expansions form a standard set of rational 
parametrizations of X at P. 

Remark 2.3. The role played by the Hamburger-Noether expansions in arbitrary 
characteristic is just the same as that classically played by the Puiseux expansions 
in characteristic 0, which are given by 

X(t) - i",v 

Y(t) it 
i>v 

where a C F* and Ai E F. The main obstacles for using Puiseux expansions in 
both theoretical and algorithmic purposes are basically the following: 

* They do not always exist in positive characteristic. 
* When such expansions exist, the problem of making them primitive is not at 

all trivial (see [1] or [5]). 
* The parameter t is not (in general) a rational function over the given curve. 

Avoiding the above three obstacles is the main reason why we use Hamburger- 
Noether expansions instead of Puiseux expansions. Moreover, the procedure for 
computing the Hamburger-Noether expansions provides at the same time a de- 
scription of the desingularization of a plane curve which is simpler than the usual 
presentation in terms of blowing-ups, as we will see in the next section. 

Now, we show how to compute the Hamburger-Noether expansions without hav- 

ing, a priori, any local parametrization of the branch, but only with the aid of the 
Newton diagram of the local equation of X at P. We will do it for the case of only 
one rational branch at P for the sake of simplicity, but the method also works for 
several branches (in the reduced case) because of the fact that the Newton polygon 
would be the collection of those of each branch joined together with increasing slope 
(see [24] for further details). 

From now on we will assume without loss of generality that K = F, so that the 

ground field will be denoted by F. Let X be given in affine coordinates by the local 
equation f(X, Y) -= a,p>o 

c•pX'YO 
- 0, f being an irreducible polynomial in 

F[X, Y]. Assume that we want to study the point P = (0, 0) and that there is only 
one rational branch at the origin defined over F. Implicitly, we are assuming for 

simplicity that the point is rational over F, i.e., the residue field is K = F, in order 
to be able to translate it to the origin, but this is not a serious restriction, since 
otherwise we can substitute for F an initial symbolic extension K of F. Then we 
consider the Newton diagram of f 

D(f) - {(a, 3) cI C# 0} 

and we call the Newton polygon of f (at the origin) the set of all the bounded 
segments of the convex hull of D(f) + IR2 , and it will be denoted by P(f). 
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Excluding the trivial cases where the curve is one of the coordinate axes, let 
1 (respectively n) be the minimum integer such that (1, 0) E D(f) (respectively 
(0, n) E D(f)). We can obviously assume that n i 1. In this case, the Newton 
polygon consists of just one segment with nonzero slope and extremes (1, 0) and 

(0, n). If A = P(f) is the Newton polygon we can define 

L(X, Y) 
" cpX•Y•" (a,P,) EA 

One obviously has L(X, Y) = c D(X, Y) for some c E IF* and some D(X, Y) which 
is monic in Y and defined over F. Moreover 

d 

D(X, Y) = 
(Y"' -_ Xj')e 

j=1 

for some 6j E F*, where ed = gcd(l, n). Then the characteristic polynomial of A is 
given by 

d 

() (A - j). 
j=1 

It is an irreducible polynomial over F (that is, the 6j are conjugate to each other 
by the Galois group over F). Moreover, one has 1 = l'ed and n = n'ed, being 
gcd(l', n') = 1. 

If we write 1 = qn + h with 0 < h < n, we find one of the following two cases: 

Case 1. h = 0, which implies ed = n, 1' = q and n' = 1. Thus write 

ao,i = ... = ao,l,-1 0, and ao,z, = 6 

6 being a symbolic root of DA(A). We mean by a symbolic root of 4OA(A) that 
one substitutes for F the field F1 = F[A]/(IA (A)) and one takes as 6 the residual 
class of A in this field. Then, we get that the first line of the Hamburger-Noether 
expansion starts with 

Z_1= ao,,Z + 
.... 

Then we transform f by 

T 6 (f, 6, 1') = f(X, Y + 6 X") = 
fl (X, Y) 

getting fl with a segment of extremes (li, 0) and (0, n) as the Newton polygon, 
11 > 1, and we iterate the process, taking into account that fl has the coefficients 
in the field F1 = IF[A]/(IA (A)) and that it is irreducible over such field (notice that 
this process terminates immediately if there is no point of the form (11, 0)). 

Case 2. h > 0; in this case, the first line of the Hamburger-Noether expansion is 
just 

Z_1 = Z7Z1. 
Now, since the polynomial U(f, 1, n) = f(Y, X Yq) is divisible by ynq, we can 
transform f by 

f(Y, XYq) T(f, 1, 
n)- yq = fl (X, Y). 

Thus the obtained Newton polygon A1 has (n, 0) and (0, h) as extremes, h < n, 
and its characteristic polynomial is QnA, (A) = A'e Da(1/A). Then we repeat the 
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process, looking for the next line of the Hamburger-Noether expansion, identifying 
T(f,l,n) X- Z1 and Y Zo0. 

If we find the case h = 0 consecutive times during the computation of the line 
k + 1 of the Hamburger-Noether expansion, where k E {0, 1,... , r - 1}, we append 
the newly obtained result to the previous part of that line until we get the case 
h > 0, where we append the term Z~Zk+l and change to the next line. 

Hence, by applying a finite number of transformations of type T1 or T, we get 
a trivial Newton polygon where either min(l, n) = 1 or there is no point in the 
vertical axis, and the procedure stops. In this case one has all the lines of the 
Hamburger-Noether expansion except the last one. But then the equation f(X, Y) 
is transformed into a polynomial g(Zr, Zr_1), g being defined over a field F' which 
is obtained by successive symbolic extensions of F and one has 

Og (0, 0) # o0. aZr-1 

This means that one can obtain as many terms as needed of the last line of the 
Hamburger-Noether expansion from the polynomial g(Zr, Zr-I) as an implicit func- 
tion (that is, by indeterminate coefficients), since this line represents Z,_1 as a 
formal series in the variable Zr. Thus, we do not need in practice the data given by 
the (infinite) series of the last line of the Hamburger-Noether expansion, but only 
the (finite) data of the implicit equation g, which contains the same information. 
This data is what we call a symbolic Hamburger-Noether expression, that is 

Z_1 = 
ao,1Zo + ao,2Z- + ... + ao,hoZho + Zh Z1, 

Zo- a,2Z +1,3Z + z...+a hl, ZhZ2, Zo =a1,2 
+-a1,3Z - 

+. 
a 

+,l,hl 
-ZlZ2, 

2 3 
hr-_ 

hr- 1 ZT Zr-2 

ar-1,2Zr_1 

+ ar-i,3Z_l +... + 
ar-1,ha _ Zl 

+- 
Z 1+Zr, 

g(Zr, Zr-1) = 0. 

It can be computed in an effective way by the above method for every singular closed 
point of X (initially written in a symbolic extension of the base field if such a point 
is not rational). Even more, we do all these computations in successive symbolic 
extensions of F instead of considering a sufficiently large extension of it, which in 
practice saves a lot of time. In summary, at the end of the above algorithm one 
obtains, even in positive characteristic, parametrizations which are rational, and 
such that the parameter t = Z, is a rational function over F[X, Y]/(f). 

In the case of several branches the characteristic polynomial is not irreducible 
and each branch corresponds to an irreducible factor of this polynomial and its 
corresponding symbolic root, proceeding as in the case of one branch with every 
factor in parallel. Hence, in the general case we have to add in each step of the 
previous algorithm a factorization procedure for the corresponding characteristic 
polynomial, which also has an effective solution. Each irreducible factor follows at 
least one of the rational branches, so that one has an algorithm in the form of a 
tree. Thus, the branches of the tree given by this algorithm correspond one-to-one 
to the branches of the curve at the point considered, and for each tree branch one has 
associated to it (as a byproduct of the algorithm) the symbolic Hamburger-Noether 
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expression corresponding to the curve branch. The computation of Hamburger- 
Noether expansions is a known method and it has been implemented with the 
computer algebra system SINGULAR [12]. 

Remark 2.4. (i) The computation of the needed symbolic extensions of F requires 
factorization of polynomials in one variable, which has an effective solution in com- 
putational algebra. 

(ii) In fact, we could apply the method to any computable perfect field F, that 
is, when the operations in F are done in an effective way (for instance, when F is 
any field of algebraic numbers). 

Example 2.5. Let X be the projective plane curve over F2 given by 

F(X, Y, Z) = X10 + y8Z2 + X3Z7 + YZ9 = 0 

with the only singular point P = (0:1:0) which is rational over F2, being further- 
more the unique point of X at infinity. Take the local equation 

f(X, Z) = X10 + X3Z7 + Z9 + Z2 
of X where P is the origin, and apply the Hamburger-Noether algorithm to this 
equation. With the above notation, one has L(X, Z) = Z2 + X10 = (Z + X5)2; thus 

1 = 10, 1' = 5, n = e = 2, n' = d = 1 and q = 5, in the case h = 0. 
The characteristic polynomial is (D(A) = A + 1 and thus the symbolic root is just 

6 = 1, i.e., we do not need to enlarge the base field F2. Hence, one has 

a0o,o = ... = a0,4 = 0, ao,5 = 1 

and we make the change 

fi(X, Z) = f(X, Z + X5) = Z2 + X38 +... 
with L(X, Z) = (Z + X19)2 and thus 1 = 38, 1' = 19, n = e = 2, n' = d = 1, q = 19 
and again h = 0; one also has (D(A) = A + 1 and 6 = 1. Thus 

ao,6= ... = ao,18s = 0, ao,19 = 1 

and we make the transform 

f2(X, Z) = fl (X, Z + X19) = 
Z2 + 

45 
.. 

In this case, one has L(X, Z) = Z2 + X45, obtaining I = 1 ' = 45, n = n' = 2, 
d = e = 1 and q = 22, in the case h = 1 > 0 and we have to change the line in the 

Hamburger-Noether expansion without enlarging the base field. Now the transform 
to make is 

f2(Z, XZ22) 
f3(X, Z) 

Z44 - Z + X2 . 
Z44 

with the origin a nonsingular point of the new equation and the procedure ends 
with r = 1. Thus, the symbolic Hamburger-Noether expressions at P are 

Z-1 
= Z5 + Z19 + Z22 Z, 

g(Zi,Zo) = Z9Z154 
-+ 

Z1Z151 
-+- 
Z+8Z137 + ZlZ~j30 + Z127 

+- 
ZzI13 

7Z6Zf110 + Z113 +- Z5ZI07 + 
Z-Z104 

+ Z 3Zl0 + Z6Z796 
+ZZ88 + ZIZ95 Z90Z92 +7Z2 ?7844 + 

•5Z79 
1r 

02 
1Z- 

9 
-J- 

0? 
0 

• 
"J1 

-T 
l 

0 rZ Z766 + Z78 + Z1Z7 ? Z4Z62 +64+ Z50 
+Z Z145 + ZiZ2 + ZIZ39 r+ Z6 +-1ZZo + 22 
SZ l + Z 15 Z l Z8 + Z8 ? r2 + Zo. +z lz0 +0? z zE ?4?4?z1 
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3. NORMALIZATION, RESOLUTION AND ADJUNCTION 

VIA SYMBOLIC HAMBURGER-NOETHER EXPRESSIONS 

The purpose of this section is the revision of some classical concepts taking into 
account the symbolic Hamburger-Noether expressions which have been introduced 
in the previous section. Thus, for a given plane curve X one can consider its 
normalization, that is the proper birational morphism 

n : X -+ X, 
where - is the curve obtained by gluing together the affine charts given by the 
normalization of the affine graded F-algebras Au for all affine charts U of X (see 
[17] for further details). The curve ? can be obtained as the blowing-up of the 
conductor, that is the sheaf of ideals locally given by 

CX(U) - {f E Ox(U) I f Ox(U) C Ox(U)}. 
Nevertheless, it is better in practice to look at 2 as successive blowing-ups of all 
the closed points of X which are singular until we get a curve without singular 
points, since this approach can be explicitly described by equations. In each of 
those blowing-ups one has as a result the corresponding strict transform Xi for 
i > 0 (starting from Xo - X), defined as usual (see for example [15] or [17]). This 
process can be represented by a combinatorial object called the resolution forest 

Tx , consisting of one weighted oriented tree for each singular closed point of X, and 
which is constructed as follows: 

1) The vertices represent the successive points which are obtained by blowing- 
up singular points of the successive strict transforms Xi of X until one gets a 
nonsingular point at the end of each branch of the process. Two such vertices 
p and q of one tree corresponding to the points P and Q are connected by an 
edge from p to q if Q is one of the points obtained by blowing-up P. 

2) On each edge pq? of the forest we put a weight 
ppq, [k(Q) : k(P)], where 

k(P) and k(Q) are the corresponding residue fields of the local rings Oxi,P and Oxi+i,Q- 
3) If p is the root of the tree corresponding to the singular point P of X, then 

we put on p an initial weight [k(P) : F]. On all the other vertices of the 
forest we can assign two alternative weights which are equivalent if we know 
the weights on the edges. In both cases one assigns to p a weight for each 
branch of the tree passing through p, where by a branch we denote any upper 
extremal point of the forest, and we say that a branch q passes through p when 
there is an oriented path from p to q in Tx. Notice that such branches are in 
bijection with the rational branches at P of the corresponding curve obtained 
by blowing-up P, and also with the closed points over P of the normalization. 
The two alternative weights on p for each q are the following: 
(I) The multiplicity at P of the rational branch q corresponding to q com- 

puted in the corresponding curve Xp obtained by blowing-up X, that is 
the multiplicity ep,q of the noetherian ring OxP,p/q 

of dimension 1 (de- 
noting here by q the corresponding minimal prime ideal of 

OxP,P). 
(II) The order at P of the rational branch q, that is the number mp,q 

min {vQ(f)If E mxp,p}, 
where mx,,p is the maximal ideal of the local 

ring Oxp,p 
and vQ denotes the normalized valuation (that is, with Z 

as group of values) corresponding to Q regarded as a point of 2. The 
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equivalence between both weights is given by the formula 

mp,, [k(Q) : k(P)] = ep,,. 

Notice that the order is actually the multiplicity of each of the conjugate geo- 
metric branches lying over P, considering X to be defined over the algebraic closure 
F of F. By substituting F for F one obtains another combinatorial object which is 
much more complex than the one described above and that has all weights on the 

edges equal to 1 and hence mp,q = ep,q. This object can be easily reconstructed 
from the rational object Tx and it does not show properly the structure of X over 
F; thus 7X is a more precise invariant of the normalization. 

We will show now that from the computation of symbolic Hamburger-Noether 
expressions one gets, as a by-product, the desingularization of the curve (see [1] for 
more details). In fact, for simplicity consider again the case of only one rational 
branch. Let f E F[X, Y] be a local equation of X at P, supposed rational and 
P - (0, 0) in the affine coordinates X, Y (otherwise we consider an initial symbolic 
extension K instead of F). If we write 1 = qn + h as in the previous section, then 
the first q infinitely near points P = Po, P1,... , Pq-1 are rational over F, with 

Y 
Pi = (0, 0), for 0 < i < q - 1, in the local affine coordinates {X,X } at Pi. Xi 

If h = 0, then Pq has the symbolic field F1 = , F[A]/((IQ(A)) as residue field, with 
Y 

Pq = (0, 0) in the local affine coordinates related to F1 given by {X, - 6}, 6 

being a symbolic root of the characteristic polynomial Az (A). 
If h > 0, then the new coordinates are {Z1,Zo0}, Pq is rational over F and 

Pq = (0,0) in these coordinates, and Z1 = 0 is the exceptional divisor instead of 
Zo = 0. Anyway, by doing the above changes of variables successively one easily 
gets the corresponding total, strict or virtual transform of any divisor. 

With this notation, the edges pi-1li 
of the resolution forest Tx, pj corresponding 

to Pj, have weight 1 either if i < q or if i = q and h > 0, and weight d if i = q and 
h = 0. The value e - n' in each step is just the order of that branch at Po, ... , Pq-1, 
and n = d - e - n' is the multiplicity. The weights at Pq appear in the next step of 
the algorithm, where Pq plays the role of Po = P, and so on. 

When one gets the trivial polygon by iterating this method, one obtains all the 
infinitely near points with all the weights of the combinatorial object Tx. When 
the procedure ends, one has the coordinates {Zr, Z-,1} and the local equation 

g(Zr, Zr-1), satisfying (0, 0) 

- 

0. Doing s additional transformations of type 

T1 one obtains the embedded resolution, with Z' the initial form of g(Zr, Zr-1). 
In the case of several branches, the resolution can be obtained taking into ac- 

count that there are as many irreducible factors of the characteristic polynomial 
as infinitely near points in the exceptional divisor, and the corresponding symbolic 
roots yield suitable local coordinates for such points, that is, everything can be 
done, branch by branch, with an algorithm in the form of a tree. 

Example 3.1. In Example 2.5, one obtains the resolution tree of X at P as the 
sequence of points 

P - 
Po --* Pl --+ - - 

-- 
P21 P22 - q 
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corresponding to rational points of multiplicity epi,q 
= 2 if i = 0,... ,21, and 

ep22,, = 1, the weights of all the edges being 1 as the initial weight, since we have 
never enlarged the base field. 

Remark 3.2. The above example shows how the computation of the symbolic 
Hamburger-Noether expressions to obtain the desingularization of a plane curve 
is simpler (in terms of effectiveness) than using just successive blowing-ups. In 

fact, the Hamburger-Noether method requires in this case just 3 transformations, 
compared to 22 blowing-ups. In general, each transformation in the Hamburger- 
Noether algorithm is equivalent to a sequence of blowing-ups, so that the number 
of polynomial transformations on the equation of the curve is smaller, and so the 
final complexity. In other words, sometimes one needs several blowing-ups in or- 
der to get something essentially new in the desingularization process, whereas in 
the Hamburger-Noether case something essential changes at every step of the al- 

gorithm, and so symbolic Hamburger-Noether expressions give a way to be more 

precise and effective in dealing with the resolution process of a plane curve. Be- 

sides, the Hamburger-Noether method gives an automatic way to select convenient 
coordinates at all the infinitely near points, which become good for further compu- 
tations. 

On the other hand, the additional work to obtain the desingularization tree from 
the Hamburger-Noether algorithm is not very hard, since it basically consists of 

reading the arithmetic data which have been already computed in the intermediate 

steps. The only important work would be the computation of all the intermediate 
strict transforms, when one essentially repeats all the sequence of blowing-ups, but 
in most of the applications one needs just the combinatorial process of the resolution 
and the final data of the process (i.e., those concerning the branches of the tree), and 
these data are essentially contained in the symbolic Hamburger-Noether expressions 
together with the resolution tree T7. 

Finally, from a theoretical point of view, the Hamburger-Noether algorithm pro- 
vides at the same time the desingularization tree and primitive parametrizations 
for the obtained rational branches. Such parametrizations are not intrinsically ob- 
tained from the blowing-up process. 

Some useful information which one can derive from Tx is the adjunction divisor 
A of the singular plane curve X, and hence the so-called adjoint divisors. The 

adjunction divisor of X is nothing but the effective divisor given by the conductor 
ideal CX on 2 (notice that 2 is the blowing-up of Cx ). It can be computed from the 
resolution forest as follows. 

Let q1,... , q, be the branches of Tx, and let Q1, . . . , Q be the corresponding 
points of %, by identifying ? with XN. For each vertex p E T set 

e =1 ep,qj 
j=l 

with the convention that ep,qj 
= 0 if the branch qj does not pass through the vertex 

p. Then, the adjunction divisor is given by 

A= Z mp,)qj 
(ep- 

Qj. 
i=l PT 
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In the sequel, we will denote dQ - dq, - peT~ mp,q(ep - 1). One has 

deg A = ep(ep -1) deg P 

pT-x 

since deg Qj = deg P - [k(Qj) : k(P)] and ep,qj = 
mp,qj [k(Qj) : k(P)] for p in the 

branch qj. 
Now if we want to give the definition of what an adjoint divisor is, we need first 

some notation. Let P be a closed point of the curve X embedded in S = P2 and 
consider the domains R - OX,p and O = Os,p . Thus, the conductor 

Cp =CR {zR I zR C R} 

is by definition an ideal in R and R at the same time. As an ideal of R, there exists 
another ideal pap containing the kernel of the natural morphism O - R such that 
2p is applied onto Cp by this morphism. The ideal pap is called the ideal of germs 
of adjoints of X at P over F. In a global situation, the ideal of adjoints %( is defined 
as a sheaf of ideals of Os over S whose stalk at P is either %p when P E X, or 

Os,p otherwise. In other words, 21 is the preimage of the conductor sheaf Cx under 
the natural morphism 0s -~ 0x . In fact, for P E X one has %pp - Os,p if and 
only if P is nonsingular; hence 

%. 
has a finite support and can be given by the finite 

set of data {ap I P E Sing (X)}. 
On the other hand, with the above notation and following [3], for P E S and 

h C Os,p with ep(h) > ep - 1 given, denote by H = div(h) the divisor defined 

by h on the surface S, and consider w7H = div(7rh) - (ep 
- 1) Ep + H, where 

7rp denotes the blowing-up at P and Ep the exceptional divisor of 7rp. Then H is 
called the virtual transform of H (with respect to P and the weight ep), and the 

multiplicity ltq(h) " eq(H) (for q proximate to p, that is, the corresponding point Q 
is in the strict transform of the exceptional divisor created in the blowing-up of the 
point P) is called the virtual multiplicity of h at q related to e, - 1. By induction, if 
one substitutes for the surface S the corresponding one at the inductive step, and 
by taking the successive virtual transforms related to the values e,. - 1, one has in 
a similar way the concept of virtual multiplicity at any q in Tx , where we take in 
successive steps the virtual multiplicity I,.(h) instead of the value ep(h) taken in 
the first step. Then, one has 

%pp {h Os, qh) q -1 q > p, q E TX}. 

As a consequence, for an F-rational divisor D on the surface S one has the 
following four equivalent ways of saying that D is an adjoint divisor: 

(i) Adjoint by branches: if the intersection multiplicity of D and X at every ratio- 
nal branch q of X is at least the coefficient dq that appears in the adjunction 
divisor Ax.I 

(ii) Divisorial adjoint: if N*D > A, where N = i o n, n the normalization of X 
and i the embedding of X in S. 

(iii) Arithmetic adjoint: if the local equation of D at every point PC X is in %Pp. 
(iv) Geometric adjoint: if the virtual multiplicity of D at every infinitely near 

point corresponding to T. is greater than or equal to the effective multiplicity 
of the strict transform of X at this point minus one. 
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Adjoints are useful for many purposes. One of them is to describe the vector 
space of finite dimension 

?(G) " {f E F() I (f) + G 0} U {0} 
for an arbitrary F-rational divisor G on ?, as derived from the classical Brill- 
Noether theorem. Assume that X is given by the homogeneous polynomial F E 
IF[Xo, X1, X2]. Take a divisor G on j that is rational over F and consider a form 
Ho E IF[Xo, X1,X2] of degree n, with n E N \ {0}, defined over F, not divisible by 
F and satisfying 

N*Ho > G + A. 

Then, the Brill-Noether theorem states that 

h 
?(G) = {h I H E , H + F-IF[Xo,XI,X2] and N*H + G > N*Ho} U {0}, 

where h, ho E IF(X) denote respectively the rational functions H, H0 restricted on 
X, and T, C IF[Xo, X1, X2] denotes the set of forms of degree n. 

This result allows us to compute a basis of ?(G) over F by means of an effective 
algorithm (see [15] for more details). Apart from the computation of A, which can 
be done with the aid of the Hamburger-Noether algorithm, the main problem to 
solve in order to carry out the algorithm is the computation of a vector space of 
the form 

(R, n) - H E : FIH or N*H > A + R} U {O}, 
where R > 0 is any rational divisor. This is just a problem of computing ad- 
joints with passing conditions which will be studied in the next section, where the 
Hamburger-Noether expressions will again play an important role. 

4. COMPUTING ADJOINTS WITH BASE CONDITIONS 

We show in this section how to impose on a form H of given degree n to be an 
adjoint of the curve X with extra passing conditions, these conditions given by a 
divisor R which is F-rational and effective. This is what we call adjoints with base 
conditions, and it is founded on the classical ideas of Enriques [6] of testing passing 
conditions. This can be applied in particular to the computation of a vector basis 
of ?(G) with the aid of the Brill-Noether algorithm. 

In practice we know the polynomial F(Xo,XI, X2) E F[Xo,X1, X2] defining the 
absolutely irreducible curve X in the projective plane, and we have the data of a 
divisor R that is effective and rational over F, involving a finite number of rational 
branches of X and their corresponding coefficients. We must first take a value of n 
such that there exists an adjoint of degree n which is not a multiple of the equation 
F of X and satisfying 

N*Ho 2 A+ G, 

that is, such that the vector space 

2(R, n) ({H E J : FIH or N*H>A+R} U {0} 
is nonempty. You can find in [13] a bound for such an n. 

In order to imposed the base condition, there are two ways to proceed. For the 
first one, assume that from the symbolic Hamburger-Noether expressions we have 
computed by lazy evaluation the rational parametrizations (X(Z,), Y(Z,)) given 
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by the corresponding Hamburger-Noether expansions at every branch involved in 
the support of the adjunction divisor A and R. 

The Dedekind formula allows us to find the coefficient dq of A at the rational 
branch q, which is given by 

dq ordt (f(X(t) 
Y(t)) rd fx (X(t), Y(t)) 

XI(t) Y/ (t) 

(X(t), Y(t)) a rational parametrization of q (notice that either X'(t) Y 0 or Y'(t) # 
0). The algorithm to compute the symbolic Hamburger-Noether expressions pro- 
vides us with as many terms of such a parametrization as we need to obtain the 
above orders in t, by successive substitution and lazy evaluation. 

Now we consider the coefficient rq of R at q, and thus the local condition at q 
imposed on H by the inequality N*H > A + R is given by 

ordt h(X(t), Y(t)) 2 dq + rq, 
h the local affine equation of H in terms of the coordinates X, Y at the corresponding 
point P. Again a suitable number of steps of the lazy evaluation suffices to describe 
the first dq + rq monomials of the Taylor expansion of h(X(t), Y(t)) as a function 
of the indeterminate coefficients of H, whose vanishing gives the required linear 
conditions, taking all the possible branches q in the support of A and R. 

The second way is just the imposition of virtual passing conditions through the 
infinitely near points of the configuration of resolution (x with virtual multiplicities 
ep - 1, what also yields linear conditions on H. The resolution configuration ,x 
stands here for the set of points P (at the successive blowing-ups) corresponding 
to the vertices p E I. Notice that from the symbolic Hamburger-Noether expres- 
sions one can derive not only the total information of Cx but also the information 
on bigger configurations D obtained by adding to Cx finitely many points with 
multiplicity 1 at the end of every branch of T.. Furthermore, the algorithm to 
compute the symbolic Hamburger-Noether expressions also gives us the weights for 
the resolution tree and local coordinates at every infinitely near point, as we have 
seen in the previous section. On the other hand, we say that a homogeneous poly- 
nomial H passes (virtually) through a configuration D of infinitely near points of 
X with virtual multiplicities {pp P E fD} if the virtual multiplicity of H at every 
point P of (as defined in Section 3) is greater than or equal to ,pp, generalizing 
the concept of geometric adjoint given in the section above. 

The total number of imposed linear conditions is 

ep 
(ep-1) deg P = 1deg A 2 2( 

PEQx 

since the condition 
pp(h) 

_ 

ep - 1 is equivalent to the vanishing of ep coeffi- 

cients, which yields this number of conditions over a field isomorphic to the residue 
1 

field k(P), and thus Iep (ep - 1) deg P conditions over the base field IF. Moreover, 
such conditions are linear independent whenever n > m - 3, because of the Noether 
adjunction theorem, which is referred to the Section 5, and the virtual transform 
fH of H can be computed from the symbolic Hamburger-Noether expressions. Note 
that the first ep - 1 terms of the Taylor expansion of H(X(t), Y(t)) vanish. 

Now we must add to N*H > A the conditions given by R. If supp R does not 
contain any singular point (that is, the adjoint defined by Ho passes through ,x 
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with actual multiplicities ep - 1), then the condition N*H > A + R is equivalent 
to N*H > A and N*H > R at the same time, and thus the method is just the 
same as before. This situation can be assumed if n is large enough, by a theorem of 
Serre about the vanishing of the cohomology, but in practice the estimate of such 
values of n is very hard and we will give an alternative method to proceed. 

Denote by rq the coefficient of R at the rational branch q, with rq > 0 by 
assumption. We will show that N*H > A + R can also be described with virtual 

passing conditions on H. In fact, consider the configuration x+,R given by adding 
to Cx the first rq points of multiplicity 1 in the sequence of infinitely near points 
corresponding to the branch q, for all q in the support of R. 

Recall that the condition N*H > A + R can be written in terms of the local 
conditions 

(*) ordt h(Xq(t), Yq(t)) > dq + rq 

for each rational branch q in E+,R , with (Xq(t), Yq(t)) 
a rational parametrization 

corresponding to q. From the inequalities (*) one gets the following result. 

Proposition 4.1. Under the above conditions, the inequality N*H > A + R is 

equivalent to the condition that the hypersurface defined by H passes through the 

points of C+,R with virtual multiplicities ep - 
1 if p E C and 1 ifp Ep +,R \ ~. 

Proof. If N*H > A + R, then N*H > A, since R > 0. Thus, from the definition of 
A one obtains that H passes through the points p C E with virtual multiplicities 
ep - 1. On the other hand, the formula (*) shows that the virtual transform of H 
at the first point of multiplicity 1 corresponding to the branch q has intersection 

multiplicity at least rq with the strict transform of this branch; hence, H passes 
through the last rq points of 

+,R 
\ Qx corresponding to q with virtual multiplicity 

1. 
Conversely, if H passes through the points of E+,R with the above virtual mul- 

tiplicities, then (*) is satisfied for any branch q in ,R. 

Remark 4.2. The above result is considered in [3] for the case rq = eN(q),q - 1 
studying the behaviour of the polar curve of a plane curve in characteristic 0. We 
have proved that in fact the result is also true in any characteristic and for arbitrary 
values of rq whenever rq, 0. Notice that (in total) one considers a number of linear 

1 
conditions equal to - deg A + deg R, but they may not be linearly independent. 2 

Remark 4.3. The theory of Enriques on plane curves with assigned singularities or, 
in more modern terms, the theory of Zariski-Lipman on complete ideals, allows us 
to substitute the weights ep -1 in xt and 1 in &,R \ tx by other weights ep over 

&+,R satisfying the so-called proximity inequalities, that is 

V--p 
E 

-R r-*p 

This substitution can be done by means of a combinatorial algorithm known as 
the principle of discharge (see for instance [3]). This algorithm is combinatorial in 
the sense that one can describe it just in terms of the embedded resolution forest 
associated to the configuration Ej+,R 
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Remark 4.4. Notice that the rq added points of multiplicity 1 in each branch q can 
be deduced in practice from the symbolic Hamburger-Noether expressions comput- 
ing the first rq terms of the Taylor expansion of the implicit function given by the 
polynomial g(Zr, Zr-1). As a consequence, everything in the current section can be 
carried out with the aid of the Hamburger-Noether algorithm given in the previous 
sections, instead of using the theory of blowing-ups, as usually. 

5. COMPUTING WEIERSTRASS SEMIGROUPS 

In this section we show how to compute, for a given rational point P of the 
smooth curve %, the Weierstrass semigroup Fp consisting of the Weierstrass non- 
gaps at P, together with a function f' with a unique pole at P of order 1, for each 
1 E Fp. As a motivation, this problem is closely related to the decoding procedure 
of Feng and Rao for algebraic-geometric codes (see [8]). The proposed problem can 
be easily solved under special conditions with the aid of the theory of approximate 
roots (see [2]), but the method that we propose here works in a quite general situa- 
tion and it is based on the theory of adjoints. For this, we make use of the classical 
adjunction theorem. 

Denote by An the set of adjoints of degree n of the curve X embedded in lp2 and 
denote N = i o n, n the normalization of X and i the embedding of x in pl2. For 
every D E An one can consider its pull-back, which is given by N*D = A + D' for 
certain D'. The adjunction theorem, due to Noether, says that if n + 3 > deg X, 
the divisors D' = N*D - A for D E An are exactly those in the complete linear 
system IK: + (n - m + 3) L|, Ky a canonical divisor on ?, L the hyperplane section 
divisor and m = deg X (see [11] for details). 

This result means that local adjunction conditions are linearly independent if 
imposed on divisors of large enough degree, and this independence is in fact global, 
that is, when imposed on all the points of X at the same time. In particular, if 
n = m - 3, one obtains the following result. 

Proposition 5.1. For n = m - 3 one has an F-isomorphism of complete linear 
systems 

An I K, |, D F? N*D - A. 

Notice that this map is injective since n < rn, and the dimension over F of the vec- 
tor space of forms of dimension m - 3 in three variables equals the arithmetic genus 
Pa(X). But now the total number of linearly independent adjunction conditions is 
1 1 - deg A, and thus the formula of the geometric genus g(x) Pa(X) - - deg A can 
2 2 
be seen as a problem of virtual conditions through the configuration of resolution 

In this situation, assume that G = IP, where 1 is a nonnegative integer and P 
is a rational point of ?, that is, a rational branch defined over F at a certain point 
of the curve X. Then the Riemann-Roch formula can be applied to the divisors IP 
and (1 - 1) P, what yields the equality 

(f(1P) - f((1 - 1) P)) - (i(lP) - i((1- 1)P)) = 1, 
with 0 < ?(lP) - f((1 - 1) P) < 1 and -1 < i(lP) - i((1 - 1) P) < 0. Therefore one 
has 1 F p if and only if 1 > 1 and there exists a differential form which is regular 
on ? and with a zero at P of order 1 - 1. Notice that 1 E p if 1 > 2g. From these 
remarks and Proposition 5.1 one can easily prove the following 
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Proposition 5.2. Let 1 E Z such that 1 < 1 < 2g - 2. Then: 

(a) 1 Fp if and only if there exists a homogeneous polynomial Ho of degree m-3 
with N*Ho > A + (1 - 1)P such that P is not in the support of the effective 
divisor N*Ho - A - (1 - 1)P. 

(b) There exists l' > 1 with l' Fp if and only if there exists a homogeneous 
polynomial Ho of degree m - 3 such that N*Ho > A + (1 - 1)P. 

As a consequence, the following result provides us with an effective method to 
do the preprocessing of one-point AG codes with the aid of plane models of curves, 
and it works in a quite general situation. 

Theorem 5.3. Under the same assumptions as above, there exists an algorithm 
founded in the theory of adjoints for computing the Weierstrass semigroup Fp to- 
gether with functions f' with a pole at P of order 1 and regular on fj \ {P}, for all 
1 E p. 

Proof. (I) Computing the Weierstrass semigroup: Taking G = (1 - 1)P instead 
of the divisor R in Proposition 4.1 and using the configuration ?+,G one can 
impose the linear conditions given by N*H > A + (1 - 1)P on forms H 
of degree m - 3, which are equivalent to virtual passing conditions through 
q E Qx with multiplicities eq - 1 and through q E +xG\ \x with multiplicity 
1. 

Then for 1 increasing from 1 = 0 (always in Fp) one imposes successively 
the linear conditions given by N*H > A + IP, adding one condition in each 
step. Thus, the added condition given by the new 1 is linearly independent of 
the previous conditions, by using Proposition 5.2, if and only if 1 V F p. All 
the g gaps of Fp, and hence the semigroup itself, are computed in at most 2g 
steps. 

(II) Computing the functions fi: There are two ways to proceed. One way is to 

compute the functions f' for all 1 < 1, 1 a given upper-bound. The other 
way is to compute first a generator system for the Weierstrass semigroup and 
then to give the functions only for all 1 in such a system, with I the largest 
generator. For practical reasons, this generator system may be the Apery 
system related to a certain nonzero element e of the semigroup (usually the 

minimum) and then it suffices to consider = c + e - 1, where c is the 
conductor of the semigroup. Such a generator systems has many advantages 
for further arithmetic computations (see [2]). Anyway, the method described 
below, which is a suitable application of the Brill-Noether algorithm, works 
in both cases. 
(i) Compute a homogeneous polynomial Ho not divisible by F of large enough 

degree n satisfying N*Ho > A + IP. 
(ii) For any 1 e Fp with 1 < 1, define RI as the effective divisor such that 

N*Ho = A + 1P + R1 . One obviously has that 
R1-1 

= R1 + P. Thus, for 
decreasing 1 we can impose the conditions N*H > A + Ri by means of 
Proposition 4.1 in order to find a homogeneous polynomial H1 E 2T(R1, n) 
not satisfying the condition N*Hi 2 ?A + Ri1 . 

(iii) Thus, the function f' = H1/Ho restricted to x is regular on X \ {P} and 
has a pole at P of order 1. O 

Example 5.4. Let X be the Klein quartic over F2 given by the equation 

F(X, Y, Z) = X3y + Y3Z + Z3X = 0 
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whose adjunction divisor is A = 0, since X is nonsingular. We are going to compute 
the Weierstrass semigroup at P = (0:0:1) with the above method. 

Since P is nonsingular one easily obtains by lazy evaluation a local parametri- 
zation of X at P given by 

X(t) = t3 + t10+... 
Y(t) = t. 

Notice that every plane curve is adjoint to X, since A = 0. Thus, in order to get 
the gaps of Fp one uses adjoints of degree m - 3 = 1, whose generic equation is 
given by H(X, Y, Z) = aX + bY + cZ. Then, by substituting the first terms of the 
local parametrization at P we get 

h(X(t), Y(t)) = c + bt + at3 + at10 +... 

and proceed as in Theorem 5.3: 

* 1 = 1 is obviously the first gap, since g = 3 > 0, but anyway it can also 
be checked by the method, since 1 = 0 imposes no condition whereas 1 = 1 
imposes the condition ordt h(X(t), Y(t)) 

_ 
1, which is equivalent to c = 0. 

* For 1 = 2, the inequality ordt h(X(t), Y(t)) > 2 is equivalent to the conditions 
c = b = 0, which are linearly independent of those imposed by 1 = 1, and thus 
1 = 2 is a new Weierstrass gap. 

* If I = 3, then ordt h(X(t), Y(t)) > 3 is again equivalent to c = b = 0. Thus 
the new condition depends on the previous one and 3 E Fp. 

* At last, when 1 = 4 the condition ordt h(X(t), Y(t)) 2 4 is equivalent to 
c = b = a = 0. Then 1 = 4 is the third gap of Fp and the procedure ends. 

Thus the Weierstrass gaps are 1 = 1, 2, 4 and the minimal generator system is 
then {3, 5, 7}. Notice that this semigroup is not symmetric, since the conductor 
is C = 5 < 6 = 2g, and that this set of generators is actually the Apery system 
related to f = 3. We are now going to compute a function fi for each of these three 
generators also with the method described above. 

We first take 1 = 7 and search for a form Ho of degree n = 4 not divisible 
by F such that N*Ho > A + 7P = 7P. That is, taking Ho as a generic form 
of degree 4 with coefficients as variables, the needed condition is equivalent to 
ordt Ho(X(t), Y(t), 1) > 7, with (X(t), Y(t)) the above local parametrization. This 
can be easily tested with SINGULAR and one gets for instance the form Ho = X2YZ, 
which is not divisible by F. 

Now in order to compute N*Ho we use the symmetry of F with respect to the 
three variables to get local parametrizations at the points Q1 = (1 : 0 : 0) and 
Q2 = (0: 1 : 0). Thus, one easily obtains 

N*Ho = 2 N*(X) + N*(Y) + N*(Z) = 7P + 4Q1 + 5Q2. 

Then, in order to get f7 we compute R7 = 4Q1 + 5Q2 and find with the above 
method a form H7 of degree 4 not divisible by F such that N*H7 > R7 but not 
satisfying N*H7 > R6 = R7 + P. This is equivalent to the condition N*H7 2 R7 
together with the local condition at P given by 

ordt H7(X(t), Y(t), 1) = 0 

Z3obtaining for instance H7 obtaining for instance H7 = Z4 and hence f7 = . X2Y 
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In a similar way one checks that H5 = y2Z2 satisfies N*H5s R5 but not 
YZ 

N*H5 > R4, obtaining f5 X2, 
and H3 = XYZ2 satisfies N*H3 > R3 but not 

Z 
N*H3 > R2, obtaining f3 = . In particular, a basis of ?(7P) over F2 is given by 

X 

Z YZ Z2 Z3 

{1,X' X2 ' X2' X2y} 
There is an alternative way to get the functions fA from the Brill-Noether algo- 

rithm. Assume that a basis {hi,... , h,} of ?(iP) over F has already been computed 
and that 1 is not a gap. We propose a triangulation method which works by induc- 
tion on the dimension s as follows: 

(1) By computing first the pole orders {-vp(hi)} at P, assume that the functions 
{hi} are ordered in such a way that these pole orders are increasing in i, and 
set 1'= -vp(hs); if 1' < 1, we can replace 1 by 1', since ?(IP) = ?(l'P), and 
go on. 

(2) At least the function h, satisfies -vp(h,) = 1 and we set f - h, . If any other 

hj satisfies the same condition, there exists a nonzero constant Aj in F such 
that -vp(hj - Ajhs) < 1; then we change such functions hj by gj - hj - Ajhs 
and set gk - hk for all the others. The result now is obviously another basis 

{g91,..., g? } of fL(IP) over F but with only one function g, = fT whose pole 
at P has maximum order 1. 

(3) Since the functions g9 are linearly independent over F and -vp(gj) < 1 for 
i < s, one has obtained a basis {g1,... ,gl} of ?(l'P) over F, where l' 
denotes the largest nongap such that 1' < 1. But now the dimension is s - 1 
and we can continue by induction. 

The above procedure also provides us with a function fi for each nongap 1 < 1. 
In fact, it can be used to compute the Weierstrass semigroup up to an integer 1, 
since the maximum nongap l' such that 1' < 1 is just max {-vp(h),... , -vp(hs)}, 
in the above notation, and so on by induction. 

Remark 5.5. Ch. Lossen and the second author have implemented a SINGULAR li- 
brary called brnoeth. lib [7] to carry out the algorithms of this section by means 
of the symbolic Hamburger-Noether expressions. There you can find procedures 
to compute the adjunction divisor A of a plane curve, bases for ?(G) and Weier- 
strass semigroups, together with applications to AG codes. This library is cur- 
rently available with the SINGULAR distribution (from Release 2.0) via http: //www. 
singular . uni-kl . de/. 

6. APPLICATIONS TO AG CODES 

Let ? be a nonsingular projective algebraic curve defined over a finite field F 
such that ;, is irreducible over F. In order to define the algebraic geometry codes, 
take F-rational points P1, ... , P, of the curve and an F-rational divisor G (which 
can be assumed effective) having disjoint support with D - P1 +... + P, and then 
consider the well-defined linear maps 

evD : C(G) -- F" 
f - 

(f(P1),.. 
, f(Pn)) 

and resD : Q(G- D) -- F 

w-* (resp,1 (w),... , respn (w)). 
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One defines the linear codes 

CL 
- 

CL (D, G) - Im(evD), C - C(D, G) - Im(resD). 
The length of both codes is obviously n, and one has (Ca) = C' by the residue 

theorem. On the other hand, given D and G as above there exists a differential 
form w such that CL(D, G) = CQ(D, D - G +- (w)) and thus it suffices to deal with 
the codes of type CQ. 

Denote by k(C) and d(C) the dimension over F and the minimum distance of 
the linear code C respectively, d(C) the minimum number of nonzero entries of a 
nonzero vector of C. Goppa estimates for k(C) and d(C) are deduced from the 
Riemann-Roch formula as follows (see [25] for further details). If 2g - 2 < deg G < 
n; then 

k(CL) = deg G+1-g (2)[ k(CQ) = n-degG+g-1 
(1) d(CL) > n- deg G d(CQ) > deg G + 2 - 2g. 

With the assumption of having a (possibly singular) plane model X of the curve 
X, the computational algorithms that are involved in the construction of AG codes 
can be basically reduced to the following: 

(1) Find all the closed singular points and all the F-rational points of x, which 
can be done by means of Grobner bases computation (see [15]). 

(2) Compute the order of a function at a rational point P and evaluate the func- 
tion at this point when possible, which can be done from lazy parametrizations 
for the rational branch corresponding to P. More precisely, if 0 = G/H is a 
quotient of forms of the same degree in three variables and (X(t): Y(t): Z(t)) 
is the local parametrization obtained from the symbolic Hamburger-Noether 
expressions for the branch given by P, then doing the substitution 

G(X(t), Y(t), Z(t)) artr +... 
h(X(t): Y(t), Z(t)) 

bst" +... 
the order is r - s, and if 0 is well defined at P, then O(P) = as/b, (the point 
P is assumed to correspond to t = 0). 

(3) Find a basis for C(G) using the Brill-Noether algorithm, which can be done 
in terms of symbolic Hamburger-Noether expressions and computing adjoints 
with base conditions. 

An interesting case is when G = mP, P an extra rational point of ?. In this case 
the codes Cm - Ca(D, mP) can be decoded by the majority scheme of the Feng 
and Rao algorithm, which is so far the most efficient method for the considered 
codes (see the details in [8]). In order to apply this decoding method, one has to 
fix for every nonnegative integer i a function fi in F(2) with only one pole at P 
of order i for those values of i for which it is possible, i.e., for the integers in the 
Weierstrass semigroup F = Fp of j at P. Afterwards, the key to the process is the 
computation of the bidimensional syndromes defined by 

n 

Si,j(y) Z ek fi(Pk) fj(Pk). 
k=l1 

Therefore, in order to carry out this decoding algorithm, one must compute F 
and the functions fi achieving the values of the semigroup F, and Section 5 just 
addressed solving this problem in terms of the theory of adjoints with the aid of 
symbolic Hamburger-Noether expressions. 
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Example 6.1. Let X again be the curve given in Example 2.5 by the equation 

F(X, Y, Z) = X10 + Y8Z2 + X3Z7 + YZ9 = 0 

defined over F2 and whose genus is g = 14. This curve has 64 affine rational 
points over F8 (namely P1,... , P64) and only one point P = (0 : 1 : 0) at infinity, 
which is the only singular point of X and which was treated in the above example. 
Thus, if one takes an integer m with 26 < m < 64, one can construct a code 
Cm = CQ(D, mP), where D = P1 + ... + P64, whose parameters are [64, 77 - m, 
> m - 26]. For example, if m = 51, then the dimension is k = 26 and C51 
corrects any configuration of 12 errors. In order to construct such a code and to be 
able to decode by means of the Feng-Rao procedure, one first has to compute the 
Weierstrass semigroup at P and the corresponding functions. 

By using the SINGULAR library [7] mentioned above, we compute the Weierstrass 
semigroup up to the bound 

-1 
13 by the triangulation method and obtain 

Fp = {0, 8, 10, 12, 13,... } 

and the corresponding functions 

fo = 1, fs = X, flo = Y, f12 = X5 + y4, 

X5y4 + X4y2 + X3 + y8 + y 46 
f13 

X4 
= XY4 + + X6, . .. 

In fact, this is enough to construct the whole Weierstrass semigroup and all the 
possibly needed functions, since the sequence {8, 12, 10, 13} is telescopic and gen- 
erates the semigroup (see [16] and [20]). Finally, by evaluating those functions at 
the points P1,... , P64 with the aid of local parametrizations, one easily obtains a 
parity check matrix for the code Cm 

? 
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